Extensions 1→N→G→Q→1 with N=C22⋊C4 and Q=C3×S3

Direct product G=N×Q with N=C22⋊C4 and Q=C3×S3
dρLabelID
C3×S3×C22⋊C448C3xS3xC2^2:C4288,651

Semidirect products G=N:Q with N=C22⋊C4 and Q=C3×S3
extensionφ:Q→Out NdρLabelID
C22⋊C41(C3×S3) = C3×C23.6D6φ: C3×S3/C32C2 ⊆ Out C22⋊C4244C2^2:C4:1(C3xS3)288,240
C22⋊C42(C3×S3) = C3×D6⋊D4φ: C3×S3/C32C2 ⊆ Out C22⋊C448C2^2:C4:2(C3xS3)288,653
C22⋊C43(C3×S3) = C3×C23.9D6φ: C3×S3/C32C2 ⊆ Out C22⋊C448C2^2:C4:3(C3xS3)288,654
C22⋊C44(C3×S3) = C3×Dic3⋊D4φ: C3×S3/C32C2 ⊆ Out C22⋊C448C2^2:C4:4(C3xS3)288,655
C22⋊C45(C3×S3) = C3×C23.11D6φ: C3×S3/C32C2 ⊆ Out C22⋊C448C2^2:C4:5(C3xS3)288,656
C22⋊C46(C3×S3) = C3×C23.21D6φ: C3×S3/C32C2 ⊆ Out C22⋊C448C2^2:C4:6(C3xS3)288,657
C22⋊C47(C3×S3) = C3×Dic34D4φ: trivial image48C2^2:C4:7(C3xS3)288,652

Non-split extensions G=N.Q with N=C22⋊C4 and Q=C3×S3
extensionφ:Q→Out NdρLabelID
C22⋊C4.1(C3×S3) = C3×Dic3.D4φ: C3×S3/C32C2 ⊆ Out C22⋊C448C2^2:C4.1(C3xS3)288,649
C22⋊C4.2(C3×S3) = C3×C23.8D6φ: C3×S3/C32C2 ⊆ Out C22⋊C448C2^2:C4.2(C3xS3)288,650
C22⋊C4.3(C3×S3) = C3×C23.16D6φ: trivial image48C2^2:C4.3(C3xS3)288,648

׿
×
𝔽